NASA’s Space Shuttles have become a familar sight in their thirty years of service, but there have been other shuttle designs which never left the ground.Some were ingenious alternative concepts to the vehicle which is shortly to be retired, some were potential replacements and there was even a couple of foreign competitors.Let us examine some of the space shuttles that never were.

Back in the mid-1960s planners at NASA saw a rosy future of ever-expanding human space exploration. Obviously, soon Earth orbit would fill up with space stations staffed by scores of astronauts, there would be flights to bases on the Moon, while giant interplanetary space vehicles would be assembled in orbit before setting off to conquer Mars and beyond. Sober space technocrats envisaged that there would soon be a need to launch hundreds of tonnes of cargo and dozens of people into space every month. This could easily be done with expendable rockets but would be horribly expensive considering how much precision-made hardware would be discarded with every launch (how would airlines function if jet airliners were thrown away after a single flight?) To answer this need the concept of a space shuttle was born. A shuttle would be a reusable spacecraft designed to blast off, deliver a payload into orbit and quickly return to Earth. After landing, the craft would be serviced, refueled and reloaded for another mission in a few days at most. A shuttle would operate as smoothly and reliably as a commercial airliner.

Image of Starclipper

Lockheed Starclipper:note the pop-out jet engines and seating for dozens of passengers. UPDATE: since I wrote this I have discovered that this image may actually depict a hypersonic transport variant of the the Starclipper design intended to carry passengers around the world at high speed. Its basic configuration is identical to the proposed spacecraft. (Image credit:Lockheed)

 

Lockheed Starclipper (1968)

Anticipating a possible lucrative contract to build dozens of shuttles, the giants of US aerospace began to sketch out designs. A typical concept from this era was the elegant Lockheed Starclipper. Compared to today’s 122ft long Shuttle Orbiter, this would have been a big vehicle (186 ft long), launched vertically with a V-shaped expendable propellant tank wrapped around it.During the ascent this empty tank would have been discarded like the External Tank of today’s Shuttle. A cargo bay could accommodate payloads up to 60 ft in length and 22 ft wide. After enduring the heat of re-entry, a Starclipper would deploy a set of jet engines and a pair of fold-out wings (not shown in the picture) and fly (rather than glide) to a runway landing. (Source:Frontiers of Space by Philip Bono and Kenneth W. Gatland, Blandford, 1969, Aerospace Projects Review Vol3 No.2)

In 1968, NASA officially declared a goal of developing a space shuttle (or Space Transportation System) and Lockheed submitted a design based on the Starclipper to the first stage, Phase A, of this project. Phase A requested a design for a fully reusable vehicle capable of ferrying four astronauts and a minimum of 20 000 lb (9100 kg) of cargo to a space station.

 

 

Most of the designs put forward were two stage spaceplanes, pairs of aeroplane-like vehicles joined piggyback-style which would be launched vertically. One of the duo acted as a booster, carrying its partner to high speed and high altitude then they would separate. The booster would return to land on a runway while the other spaceplane travelled on to orbit.

Image of SERV

Chrysler SERV (Image credit:Chrysler)

 

SERV (1969-71)

Not all Shuttle contenders were multi-stage spaceplanes.The Single-stage Earth Orbital Reusable Vehicle (SERV) looked like a grossly enlarged Apollo Command Module which would take-off and land vertically. At launch it would rise majestically  pushed by the thrust of a single huge aerospike engine, after its mission it would re-enter the atmosphere and make a stately, albeit noisy, final descent supported by 40 small jet engines. This behemoth was designed by the engineers of the Chrysler Corporation which may seem surprising, but Chrysler was once a big player in the space industry, being the builder of both the Redstone booster which lobbed Alan Shepard and Gus Grissom into space and the first stage of the Saturn 1.

Unlike other possible Shuttles, the SERV would usually be launched without a crew but when necessary a small spaceplane called a MURP (Manned Upper-stage Reusable Payload, a proposed McDonnell Douglas product) could be mounted on the tip of the giant booster to carry a crew then return to Earth separately. In theory, a SERV could place about 51 tonnes of payload in LEO (although this would be considerably reduced when the MURP was installed). This unconventional vehicle was studied intensely by Chrysler, but NASA showed little interest and work on it ended in 1971. (SOURCES: SERV/MURP: Chrysler’s Space Truck, Aerospace Projects Review May-June 2003)

 

image of North American General Dynamics shuttle

North American and General Dynamics shuttle: The combined vehicles stand more than 276ft tall on the launch pad. Note the tiny straight wings. Referencing the classic transport aircraft of the 1930s and ’40s, this orbiter design was nicknamed the “DC-3 of Space”. A completely reusable system like this was expected to be able to launch a payload for a tenth of the cost of a traditional rocket. (Image credit:NASA)

 

Phase B Shuttles (1970)

By this time harsh cuts to NASA’s budget meant there would be no moonbases or crewed interplanetary missions in the 1970s. The Space Shuttle’s missions would be to carry cargo and personnel to a large space station and to deploy and service satellites. This implies a much reduced annual launch schedule which would eat into the project’s economic justifications, yet this seems to have been brushed under the carpet. NASA’s human spaceflight community needed the Shuttle. Without it  the US astronaut program would end with the Apollo Moon missions and the Skylab. The project gained momentum.

Phase B of the Space Shuttle development process was an investigation of a variety of two-stage vehicles. Hundred of configurations were studied on paper, computer simulations and as models in wind-tunnels. The pair illustrated above is typical, an Orbiter designed by North American Aviation (manufacturers of the Apollo CSM) mounted on a gigantic 12-engined booster designed by General Dynamics. Both are bulky craft full of liquid hydrogen and oxygen propellants (the booster alone would have weighed about 2000 tonnes at launch) with jet engines to fly them back to base. Each launch could have carried a 12 ton payload into Low Earth Orbit. This is exactly what NASA wanted (and when I was a kid, this was what the Shuttle was going to look like).

As the booster was meant to fly home again, there would be no spent rocket stages falling to Earth. Launching the Shuttle over the ocean was not essential and land-locked launch sites could be used as an alternative to the Kennedy Space Center (McConnell AFB in Kansas, about as far from the ocean as you could imagine, was one suggestion).

To justify the need for the Shuttle project, NASA claimed that in the next couple of decades, so many payloads, including commercial satellites, needed to be launched into space, that  up to 75  Shuttle flights per year would be made. This figure assumed that the Shuttle would monopolise both the US and the international markets for launch vehicles (at least among the non-communist nations) and that the European launch vehicle (which eventually became the successful Ariane rocket family) would never enter service. As the Shuttle would launch everything the US fleet of traditional rockets was allowed to dwindle. This had an unexpected consequence; after the Challenger disaster in 1986 and the grounding of the Shuttle, the US all but lost its ability to  launch spacecraft for more than two years.

The Shuttle Space Transportation System was expected to be ready by 1977 (no comment). By then reality had started to intervene. A belt-tightening US Congress was unwilling to fund the project. To carry on with the Shuttle project, NASA needed the support of the US Air Force (and other less public intelligence gathering agencies such as the National Reconnaissance Office) who wanted a similar craft to launch spy satellites. If the military supported the project it would be loaned Shuttles from NASA for missions flown by military crews; it was expected that one in three Shuttle missions would be of this type. However, to bring the USAF on board the project, the Orbiter had to be redesigned.

Two crucial elements demanded by the Pentagon were an expanded cargo bay sized for payloads larger even than their huge KH series satellites. NASA planned a cargo bay that was 40 ft long and 12 ft wide, but for reasons which are still mysterious the military and intelligence community wanted a 60 ft by 15 ft bay (the KH-9 HEXAGON satellite was less that 10 ft in diameter) and delta (triangular) wings.  A larger payload bay meant heavier payloads, now the Shuttle might have to carry 30 tons into orbit.  Enlarging the cargo bay and the Shuttle’s lifting weight to meet the Air Force’s requests meant a larger and heavier craft. The delta wing was judged vital for the Air Force as it would allow a Shuttle to be launched from a pad at Vandenburg Air Force Base in California (a facility built at huge expense but never used) into polar orbit, deploy a satellite in the course of a single orbit and immediately re-enter the atmosphere to land somewhere in the US. A combination of aerodynamics and orbital mechanics made this feat impossible with the small straight wings favored by NASA. Of course, despite the Shuttle being designed around this mission profile, no Shuttle  was never called on to fly it, a few miltary Shuttle flights did take place but flew from the NASA facilities in Florida. This whole redesign to military requirements was expensive and ultimately wasted but without it the Shuttle would never have flown.

(SOURCE: The spooks and the turkey: Intelligence community involvement in the decision to build the Space Shuttle )

 

 

 

Phase B Prime designs (1970)

Image of North American -General Dynamics shuttle

Early 1970s Phase B Prime Shuttle concept from North American and General Dynamics. Intriguingly between 1970 and 1972 the UK companies BAC and Hawker-Siddley hoped to be involved in the project as sub-contractors but this came to nothing. (Image credit:NASA)

 

The image above is basically a re-iteration of the Rockwell-GD design to meet the NASA/USAF requirements. At this time things became worse still for NASA, further budget cuts meant there would be no space station to shuttle to. Originally the Shuttle and station would have been developed simultaneously. There probably would be a station eventually (1980 perhaps) but for some years the Shuttle Orbiter would have to act as a space station in its own right, staying in space for up to 30 days while astronauts and specialists carried out scientific research on board. The Orbiter would need to be more complex as a result. Then it was realised that designing and building these complicated two-stage craft was  impossible with the available funding. A re-think did away with the piloted winged booster, replacing it with two reusable solid fuel boosters. The Orbiter was slimmed down by removing the vast majority of its fuel tankage, moving the propellant to a large throwaway external tank.

The Shuttle  by now was meant to make fortnightly missions to deliver cargoes of up to 30 tonnes into orbit (in reality, this payload weight was never achieved and this flight schedule was never needed). The jet engines were deleted, instead the Shuttle would make an unpowered gliding descent. This was Phase C of the development, and marks when the Space Shuttle as we know it today was born when President Richard Nixon approved the project and North American Aviation (which changed its name to Rockwell International about this time) was chosen to build it.

 

Image of early shuttle

Nearly but not quite there. Close examination of this image reveals many difference between the original design and the vehicles which eventually flew. There is a docking port in the nose and a couple of jet engines in the cargo bay for a start. More poignant are the small solid rockets on the wings. These were to boost the Orbiter away from the ET and SRB in an emergency. Eliminated to save weight and money, these might just have saved the lives of Challenger’s crew. (Image credit:NASA)

 

(In retrospect the decision to make the Shuttle only semi-reusable by eliminating the winged booster was probably wise. Building the Orbiter was a stressful enough process and it is hard for me to see how simultaneously creating another vehicle larger than today’s enormous A380 but capable of reaching 7000 mph (11250 km/h) could have gone smoothly. Separating the two craft at high speed for the first time could have ended in disaster, see the sorry history of the M21/D21 combination for how badly things could have gone wrong. )

The Shuttle design we know today was falling into place, but one engineer had a really, really different idea!

Image of C-1057 concept

Rockwell C-1057: aka the “Breadbox” this design is weirdly reminiscent of some of aeronautical engineer Vincent Burnelli’s aerofoil-shaped aircraft designs of the 1930s. (Image credit:modified from image supplied from Fantastic Plastic Models. Used by permission of Fantastic Plastic Models)

 

The Rockwell “Breadbox” (1972)

By a long way the most bizarre vehicle in this collection, the Rockwell C-1057 design congealed into existence during the Phase B studies as the result of a request that the Shuttle Orbiter be made as short as possible without sacrificing any payload space. Rockwell engineer Harry Scott’s stunningly imaginative (and I would venture to suggest rather tongue-in-cheek) solution was to turn the cargo bay sideways! The short, squat and very broad vehicle which resulted was nicknamed the “Breadbox” yet allegedly it was aerodynamically sound.How it was to be combined with the ET and SRBs is unknown to me. It is unsurprising that nothing became of this oddball concept.(SOURCE:http://www.secretprojects.co.uk/forum/index.php/topic,1928.0.html )

 

image of Shuttle C

Shuttle C (Image credit:NASA)

 

Shuttle C (1989)

The Shuttle can carry up to 24 tonnes to LEO, yet it is a rather inefficient launch vehicle. It is powerful but every mission ‘wastes’ possible payload weight in the form of the craft’s wings, tailfin, thermal protection system, landing gear and crew compartment. If we ever needed a really big space station in orbit or to launch a mission to Mars, the Shuttle doesn’t cut the mustard. Various ideas to maximise the Shuttle’s payload by deleting everything not essential have been considered. Shuttle-C (C for Cargo) is the best known of these. This proposal would replace everything ahead of the Orbiter’s engines with a disposable cargo container attached above a standard ET and SRB package.This could have placed up to 77 tonnes into orbit with every launch (without a crew) but in the absence of a pressing need it has never been built. (SOURCE:Shuttle-C at Globalsecurity.org)

 

image of ALSV

An ALSV and its mothership (Image credit:Rockwell via up-ship.com)

 

USAF Air Launched Sortie Vehicle (early 1980s)

In the early 1980s, when the Cold War was at its chilliest, the USAF researched a mini-shuttle referred to as  the Air Launched Sortie Vehicle (ALSV). This was to be a small reusable spaceplane which could be launched at short notice from virtually any location in the world, avoiding weeks of preparation on a launch pad.Its missions would include deploying and recovering small satellites (and I would imagine reconnaissance and possibly combat missions too). The ALSV would have been about the size of an F-15 fighter aircraft but would not have carried any crew. Mounted on a Shuttle-style external tank, the ASLV was to have been carried aloft to an altitude of 15-16 km by a very souped-up Boeing 747 (complete with a tail-mounted Space Shuttle Main Engine). The 747 would have made a steep zoom climb, releasing the ALSV at the top. The mini-space drone would fire its own rocket motors to ascend to orbit.

Initially, this was not thought to be an especially difficult technical challenge but research suggested that building and operating the ALSV would be complex and expensive and the project faded away.Probably today’s X-37 performs similar missions to the ALSV. (SOURCE: http://www.secretprojects.co.uk/forum/index.php/topic,2913.0/highlight,space+sortie.html )

Image of Hermes

Hermes: In the late 1990s European space travellers could have orbited Earth in their Hermes spaceplane but it was not to be. Like several of the vehicles in this collection, the Hermes design went through many iterations before the project was cancelled so artist’s impressions of the craft can look very different depending on when the artwork was prepared.(Image credit:ESA)

 

Hermes (1975-93)

Hermes was a proposed spaceplane studied by firstly the French government and later the European Space Agency (ESA) between 1975 and 1993.This craft was initially planned as a multi-purpose reusable ‘space truck’ capable of deploying satellites and carrying up to six ESA astronauts into orbit.It would have been essentially a miniature (19m long) version of the US Space Shuttle complete with a payload bay for deploying satellites.However detailed engineering studies showed this original concept to be beyond the contemporary state of the art, especially when the 1986 Challenger disaster brutally showed the necessity for adding a heavy emergency escape system for the crew. Inevitably the design was scaled back but it was still approved for construction by ESA in 1987. A cynic said that this less-capable Hermes could only be of use to launch two Frenchmen and a Belgian plus their packed lunch into space (this is a bit unfair as it was actually designed for a 3 tonne payload plus three person crew). After years of research, the now-unviable project was allowed to fade away before any Hermes craft were built.

Despite this less than inspiring history, Hermes has had a huge influence on European space activities right up to the present:the mighty Ariane 5 rocket, central to ESA’s access to space, was originally designed to launch the Hermes into space.After Hermes was cancelled, Ariane 5 development continued. Being designed to carry a 21 tonne spaceplane explains why this rocket is rather large for a mere commercial satellite launcher.This has worked out well for all concerned, as the Ariane 5 has since been cleverly adapted to deploy multiple satellites in a single launch.In theory, Ariane 5 should be among the most reliable of launch vehicles as it was designed to be ‘man-rated’, that is built to a higher standard of safety to protect its passengers.

 

Image of Buran_in_Gorky_Park

Red Star lookalike:a Buran orbiter in Gorky Park, Moscow (Image credit:Jean and Nathalie via Wikimedia.org)

 

Buran (1974-1993)

This vehicle perhaps should not be on this list as it was actually built as a result of a huge and expensive development process and made a (single) space flight.Throughout the 1970s and 80s, the USSR was rumoured to be developing a shuttle of its own and this was expected to resemble the Starclipper in appearance.However when the Buran (“Snowstorm”) orbiter was revealed publicly in 1988 it was seen to be very, very, very similar to its American rival. Although the Buran orbiter strongly resembled its NASA counterpart there were many differences.Most significant of these was Buran’s lack of main engines as it was designed to be  lifted into orbit by the gigantic Energia booster rocket.

 

 

Why was it built? In the 1970s, Soviet experts studied the proposed US Shuttle program and concluded that it made no sense at all; there simply was no need to build so sophisticated a vehicle just to place a handful of communication and weather satellites into space every year.The Soviets decided that the US Shuttle had a sinister hidden purpose, possibly as a nuclear bomber.The only way to uncover what exactly a shuttle was for was to build one themselves!

The Buran orbiter was at first glance incredibly similar to its American counterpart. So alike were the two craft that media organisations speculated that the Soviet vehicle’s design was based on data obtained by espionage. Stung by these rumours, the Soviets implied that in fact it was the other way around, that Buran development had began before the US Shuttle and that the American vehicle was a mere copy. Although they produced an image claimed to show Yuri Gagarin ( who died in 1968) inspecting a wind tunnel model of a Buran-like craft, the Soviet account is not widely accepted.

The prototype Buran shuttle was launched on 15 November 1988. There were no intrepid cosmonauts strapped in the cockpit. A life support system was not installed for this test flight and the mission was made completely automatically. The Buran orbited the Earth twice and returned to land on a specially constructed runway at Baikonur Cosmodrome.But after this triumph, things went awry, the planned follow on missions with a crew, including cargo runs to the Mir space station, kept being postponed. The vehicle and its sister ships under construction never left Earth again. A declining Soviet economy slowly killed the project which officially ended in 1993, so the first shuttle to visit the Mir space station was Discovery in 1995. Eight full-size test vehicles and five production Buran craft were built. Several of these lie derelict while others are now on show at sites in Russia and Germany.

The Buran which actually flew in space was carefully stored for many years at the Baikonur Cosmodrome but in 2002 the vehicle was destroyed when its hangar collapsed killing seven workers. Creating Buran (and the also abandoned Energia booster) bankrupted the Russian space program with effects which have lasted to the present. (SOURCES: Did the Soviets Build a Better Shuttle Than We Did? (link), The Secret Story of the Soviet Space Shuttle by Henry Matthews, self-published, date unknown)

 

 

Image of shuttleIIc

JSC Shuttle IIc:the crew compartment is a detachable module that would separate and re-enter the atmosphere to bring the astronauts home in an emergency (Image credit:NASA)

 

Shuttle II (1985-1988)

The Shuttle had not been ‘operational’ for long before NASA began looking at plans for a replacement vehicle.This would be based on lessons learned in developing the Shuttle, leading to a more efficient vehicle meant to enter service about the year 2000.Part way through this design study, Challenger was lost, and improving the chances of the crew surviving a disaster became a priority. Several designs were proposed, the best known two are the NASA Langely Research Center (LaRC) version and the Johnson Space Center design shown above. Shuttle II actually would have a space station to fly to (the then-planned Space Station Freedom) and servicing and supplying it was to be its primary duty. It could transport perhaps 10 tonnes of payload into orbit plus eleven astronauts, eight of whom would be passengers travelling to or from a tour of duty on the Space Station.

Constructed from light weight composite materials, a Shuttle II would be lighter but more powerful than its predecessor. The power at launch came from a single Space Transportation Main Engine (STME, an improved Space Shuttle Main Engine) and twin Space Transportation Boost Engines (STBEs). The STBEs would be mounted over the wings along with a pair of drop tanks. The empty tanks and STBEs would be jettisoned during the ascent and the STBEs would be recovered for reuse. This intriguing design was allowed to wither on the vine and the Shuttle had to soldier on beyond the year 2000. (SOURCE: JSC’s Shuttle II (1988) at Beyond Apollo.)

 

Image of venturestar

Lockheed Venturestar:this is the final configuration of the vehicle which no longer looked much like the X-33.(Image credit:Lockheed Martin Corp)

 

Lockheed Martin VentureStar (1996-2001)

By the mid-90s, it was clear the Shuttle fleet had less than twenty years of life left; it really was time to seriously think about replacing it.The planned successor was the Reusable Launch Vehicle (RLV), a cheap to run and safe craft which normally would not need a crew but could carry astronauts when necessary.This was still an ambitious goal and NASA decided to pay for a scaled-down vehicle to demonstrate the concept, this was called the X-33.The agency looked at designs from Rockwell and McDonnell Douglas but finally chose a design from Lockheed Martin based on a 128 ft long craft which Lockheed Martin called the VentureStar (which bore a resemblance to the Starclipper of thirty years before). Lockheed Martin’s X-33 was about half the length of the VentureStar.

Designed to carry a 20 tonne payload to LEO, Lockheed Martin’s VentureStar was to be a single-stage-to-orbit reusable spaceplane design.Like the Shuttle, it would take off vertically and glide to a landing.A VentureStar would not need to use solid rocket boosters, instead its design would incorporate an exotic  linear aerospike engine.Rather than being covered in thousands of fiddly tiles, it was to be covered in an advanced metallic heat shield. As the name suggests, VentureStar was to be a commercial enterprise, and customers such as NASA would have leased the vehicle as needed. Lockheed Martin claimed their VentureStar could launch satellites into orbit at about 1/10 the cost of the Shuttle.

 

 

The X-33 was meant to fly 15 suborbital hops to almost 76 km altitude, reaching Mach 13 in the process, to prove that the VentureStar was feasible but in fact it achieved the exact opposite without ever leaving the ground. Construction of the X-33 was about 85% complete when the program was cancelled by NASA in 2001, after a long series of technical difficulties.The demonstrator was too heavy and a crucial component, a composite liquid hydrogen tank ,was plagued with problems. A full-size vehicle could only meet worse problems.Once again the Shuttle seemed impossible to replace.(James Cameron apparently liked the name VentureStar so much that he used it for the starship in the 2009 movie Avatar). (SOURCE: The X-Planes: X-1 to X-45, Jay Miller, MCP, 2001).

This year the Shuttle program will finally end. Despite the ingenuity of generations of engineers, there is  no winged reusable spaceplane ready to replace it.I think that’s rather sad.The next development in US spaceflight will be the introduction some years from now of a yet to be chosen commercially-supplied space craft, One of the contenders, SpaceDev’s Dreamchaser is a small winged craft. I wonder if it will ever fly?

 

(Further reading:

The Space Shuttle Decision: NASA’s Search for a Reusable Space Vehicle, T.A. Heppenheimer, NASA History Office, 1999 (link)

Space Shuttle:The History of the National Space Transportation System, Dennis R. Jenkins, Speciality Press, 2001.

NASA Space Shuttle Manual:An Insight Into the Design, Construction and Operation of the NASA Space Shuttle, David Baker, Haynes, 2011

Space Shuttle Launch System 1972-2004, Mark Lardas, Osprey, 2004

Article by Colin Johnston, Science Education Director)

Save

Save


35 Comments

Keto Booster Ingredients · March 29, 2019 at 10:10

Hi to all, the contents present at this web site are truly amazing for people knowledge, well, keep up the good work fellows.

John Frazer · March 14, 2018 at 01:05

Regarding the Rockwell C-1075 “Breadbox”
You may be selling the work done on it short by automatically scoffing.
It was a lifting body, and aside from modern fighter jets, they’re out of fashion and out of favor. They’ve been around for a long time in various forms. See the Burnelli CBY-3 of the late ’40s, and many other Burnelli lifting body designs.
In the ’70s some people at Boeing apparently independently thought of it, and designed a big cargo plane. see Boeing 754. By their projections, a cheaper, lighter plane; with same engines and fuel load as a typical jumbo jet, either x1.6 range onto 2/3 the runway or x1.6 payload. (Lock-Mart presently projects similar performance with their hybrid wing-body logistics planes.)
Boeing dropped it when asked by the Burnelli estate about royalties for patents, and rather intransigently have stated that they will never build a lifting body logistics plane, even after their and NASA work showed the benefits in the recent X-48 line of blended-wing-body.

More pertinent to this, see the 1950s Horton “wingless”. Not the German Horten brothers; William Horton tried to get interest in a short aspect ratio lifting body,and finally got Hughes to help him build a plane very much like the C-1075. It flew test programs and showed great promise: faster, more payload/range than a normal plane in a giant airfoil shape which was easy to make and work on, large interior volume, lightweight and strong .
Ridiculously low landing speed and stall-resistant and spin-proof made it vastly safer.
Everyone was impressed and the AF was saying they had all sorts of plans.
Hughes demanded that Horton sign all rights over, and when he refused -being a vindictive greedy madman, Hughes won a court injunction against him preventing him from working in a competing area and forbidding him from even talking about it.
We wonder if Scott had any knowledge of the Horton or other work on similar low-aspect ratio planes.

See the Horton patents via google, Horton US 2734701

Sergio · July 16, 2017 at 16:13

It’s too bad that the shuttle program ended. It should have kept going for a few more years until the Orion project was in full swing. They could have kept Complex 39 in shuttle configuration and used 39B for Orion project.

BrunoT · October 23, 2016 at 01:35

Why not a shuttle orbiter, scaled far down, on top of a regular “stack” of staged rockets? The shell of the rocket engines is hardly the big cost factor. This shuttle was oversized for the needs.

    BrunoT · October 23, 2016 at 01:36

    This vehicle would need no main engines, saving weight and space for machinery and fuel. Reaction rockets to get it out of orbit would do, as it’s a glider already.

    John Frazer · March 14, 2018 at 01:11

    See the ’80s and ’90s NASA Langley HL-20 and the larger HL-42. Not like the Shuttle in that they were not meant to stay on-orbit long-term doing things, but as crew vehicles. Without a payload bay, they were small enough to go on top of a Titan 3 or similar, and to have an ejection system to try to ensure crew safety unlike the Shuttle.
    Note that the European Hermes and the Japanese HOPE-X died because too many constituencies wanted their pets included, so it go too big for either ejection systems or medium-lift boosters.
    The HL-20 deliberately was kept small and low cost and low-risk. Based around the USSR cold-war era “Uragan (“Spiral” to NATO) lifting body delta spaceplane, which the modern SNC Dream Chaser is using..

Erik · September 20, 2016 at 11:45

The Shuttle II still looks like a good basis for a fully reusable craft. I wonder how it would stack up against the Orion for safety, max payload, cost per pound, launch frequency, etc.

yuri · August 29, 2016 at 11:45

There are already projects

– Run cargo up to 20 tons into space WITHOUT traditional rocket engines.

– Descent into the MARIANA TRENCH or descent to the wreck WITHOUT using scuba diving.

Already there are projects that do not require drilling platforms for work on the ocean floor.

– ECO production of electricity WITHOUT the use of waves and ocean currents.

descriptions (protected by advocate):
https://drive.google.com/file/d/0ByOXkNu_AWoyN3otSTRGdzZZR1E/view?usp=sharing

Wes Deitle · July 23, 2016 at 00:35

One more thing my idea has not yet been proven as fact trying to be as honest and fair possible. Moving on in order to improve payload to three percent I made my rocket two stages with the first having three separated chemical rocket burns and second with just one burn for ten kilometer second burn out velocity before losses. I believe is even more effient than a SSTO now two stages first returns back to Earth after separation. Thanks.

    admin · July 26, 2016 at 10:54

    Dear Wes, thank you for your comments. As far as I understand there is no doubt that a single stage to orbit (SSTO) rocket is feasible, but it is trickier to design one which carries a useful payload into orbit and can return to the Earth’s surface for reuse. At the moment your suggestion of a reuseable first stage is attainable and I think that is what SpaceX is aiming to achieve.

      Robertabc · January 22, 2019 at 17:08

      Don’t feel NASA has would not design use a rocket like Space (x) uses engines not so efficient and are choosing extreme safety over competitive performance. A S S T O is feasible even today because rocket stages can be defined as just rocket engine burn (s) reaching Earth orbit. With an average of at least 415 ISP and 425 ISP currently S S T O should be feasible today. Secondly to a S S T O is a two stage rocket which first stage has two burns and third just one. When say burn mean the rocket engine (s) turned off for second two then are turned back on this resets the propellant load 63.2% vehicle burnout is the exhaust velocity. Seems a S S T O will have have a payload of one half it’s two stage version. Thank you. (Wes).

Wes Deitle · July 23, 2016 at 00:26

I have done research past maybe five years into SSTO vehicles and have found with an average 400 seconds chemical rocket engine and with three to four separated burns it is possible for a Single Stage vehicle to achieve Earth orbit with existing or even prior technology. Using just one continues burn requires greatest efficiency I believe. This has not been proven and I have been studing aerospace engineering for at least twenty years as a hobby now. More than one continues burn may re set the propulsion calculation in effect just like with staged rockets that drop off stages going into orbit. Thank you.

Vladimir · January 2, 2016 at 11:09

Where is MAKS ?
🙂

    admin · January 4, 2016 at 10:52

    Dear Vladimir, thank you for your question. One day I will create a Part 2, covering MAKS, HOTOL, MUSTARD, Dynasoar, RHOMBUS, Starraker and more!

David · December 14, 2014 at 01:32

Space X is sending drones to resupply the space station,but who has a working shuttle
to change crews or repairs on existing space junk! Why does it seem like they gave up on a base on the moon and are stuck on sending a crew to Mars instead?? A base on the moon is like a teaching tool..seeing how things work out there and what need to be done..before we travel to Mars. If something happened to the crew on the moon..we could send help and maybe save the people there..but..if something happened to a crew on Mars..their is No Rescue! In my opinion,we need a re-useable shuttle type vehicle!
I do not see what the problem is with that? Thanks.

Michael Hiteshew · November 23, 2014 at 16:03

Interesting that Lockheed never pursued VentureStar on their own. Lockheed had the design ability but not the vision to carry it forward, at least without firm government contracts They wanted guaranties and certainty. That’s the road to stagnation.

Instead, SpaceX appears to be moving into that niche. With a fraction of Lockheed’s resources and know-how, they’re doing the business Lockheed abandoned.

    your mom · April 11, 2017 at 16:28

    Lockheed makes stuff that flies

Siti · October 27, 2014 at 02:38

Hi, will you elaborate the difference between drone and space probes?

    admin · October 27, 2014 at 09:52

    Dear Siti

    “drone
    A remotely controlled aircraft.”

    “space probe
    See probe…”

    “probe

    3. Specifically, an instrumented vehicle moving through the upper atmosphere or space or landing upon another celestial body in order to obtain information about the specific environment.
    In sense 3, almost any instrumented spacecraft can be considered a probe. However, earth satellites are not usually referred to as probes. Also, almost any instrumented rocket can be considered a probe. In practice, rockets which attain an altitude of less than 1 earth radius (400 miles) are called sounding rockets, those which attain an altitude of more that 1 earth radius are called probes or space probes. Spacecraft which enter into orbit around the sun are called deep-space probes. Spacecraft designed to pass near or land on another celestial body are often designated lunar probe, Martian probe, Venus probe, etc. ”

    Source: DICTIONARY OF TECHNICAL TERMS FOR AEROSPACE USE (link)

    I hope this helps.

Jan · January 23, 2014 at 02:14

The URL of Beyond Apollo’s post about Shuttle II has changed:
http://www.wired.com/wiredscience/2012/07/nasa-johnson-space-centers-shuttle-ii-1988/

    admin · January 23, 2014 at 09:34

    Thanks, I’ll update the post.

Erlich · April 28, 2012 at 18:40

I .. WISH ..

dialashop · July 5, 2011 at 09:44

I am amazed by the number of space shuttle designs. Whats interesting is the ALSV and its mothership looks very similar to Russia’s Maks design. Russia’s Buran looks identical to the Shuttle. In Buran’s case obviosouly the Russians copied the Buran. I l like the look of the Lockheed Venturestar, if NASA had continued its development we would have had a true Space Shuttle replacement. Very interesting article. I like the pictures alot.

    admin · July 5, 2011 at 11:12

    There is certainly a lot of influence from the Shuttle Orbiter on Buran (I highly recommend Stephen Garber’s Birds of a Feather on the vehicles’ designs). Buran did have significant differences from its US counterpart, most especially it had no main engines, these being mounted on the Energia booster (which had no SRBs either, using four liquid fuelled strap-ons instead).

    The ALSV and MAKS (which I might cover in a follow up) are very alike, but I would not necessarily read too much into that, form is probably far more related to function in spaceplanes than any other kind of aircraft.

    The VentureStar looked great as a concept but LM pretty clearly showed (without intending to) that the technology to built it didn’t exist at the time. Perhaps something like it will be carrying payloads into orbit later this century.

    Thank for your nice comments, I enjoyed writing the article a lot too.

Eamon · May 16, 2011 at 14:06

That’s a lovely potted history of humanity’s attempt to develop regular and cheap access to space. I wonder if the SpaceX approach of building simple boosters will give way some decades down the line to a craft whose lineage is noted on this page…

    admin · May 16, 2011 at 14:40

    Thanks, I enoyed writing it. It’s a bit too potted I think, I had to leave so much out; Triamese, DC-X, BAC MUSTARD, Spiral, HoTOL all deserved a mention but got left out (but watch this space!)

    I have no idea about what the first vehicle to regularly shuttle up and down from orbit will be like (though I am curious how a SERV or Starclipper built with modern materials would work!)

MORE random pics...... - Page 3822 - Pelican Parts Technical BBS · March 9, 2016 at 19:07

[…] 10 Space Shuttles which never flew | Astronotes Quote: […]

Polyus: the Real Death Star? | Astronotes · November 5, 2015 at 13:14

[…] 60 tonne Laser Module was never installed onboard, only a ‘dummy’ of identical weight. With the Soviet space shuttle Buran project delayed and a vacant heavy launcher available, Energia provided the opportunity to hurry the […]

CST-100: Everything you need to know | Astronotes · June 9, 2015 at 14:42

[…] last time we were at this stage of development for a human spacecraft was in the 1970s when we were building the Shuttle.” In May 2015 NASA awarded Boeing a contract to send a crew to the ISS in late 2017. This will […]

Visiting Kennedy Space Center | Astronotes · December 18, 2013 at 16:13

[…] the challenge that faced NASA to make a rocket that was more cost efficient and gave us an idea of how crazy the request for a rocket to become reusable and land like a plane really was! We were introduced to the concept dreamed up by Maxime Faget of the proposed DC-3 […]

Mars by ’85? NASA’s alternative history | Astronotes · December 18, 2013 at 10:25

[…] First flight of the Space Shuttle, a winged spacecraft launched from the back of a large winged booster vehicle (illustrated above). Completely reusable, the Shuttle is responsible for a dramatic decrease in the […]

Space Shuttle History | Astronotes · October 15, 2013 at 03:40

[…] of fancy). Money was tight and this forced compromises with effects which had lasting effects. Early shuttle concepts were completely reusable, two similarly-shaped but differently-sized winged craft would have been […]

Skylab: Everything You Need to Know | Astronotes · October 15, 2013 at 03:31

[…] the hope it would soon be brought back to life.  It was still stocked with air and water. Regular Space Shuttle flights were expected to begin in 1977 and there was a general belief that visiting Shuttle missions could easily refurbish and expand […]

Apollo 16 : 40 years on | Astronotes · October 15, 2013 at 02:56

[…] became Director of Utilization and Operations at Grumman Space Station Office and then of the X-33 program with Lockheed-Martin. Admiral Mattingly was also Chairman of Universal Space Network, Universal […]

NASA's New Orion Spacecraft to Fly in 2014 | Astronotes · October 15, 2013 at 02:55

[…] a successful final product. For example, in the 1990s Lockheed Martin was contracted to produce the X-33, a spaceplane which was the basis of an earlier project to replace the Space Shuttle. Sadly, the company appeared to have grossly underestimated the difficulty of the project and the […]

Leave a Reply to CST-100: Everything you need to know | Astronotes Cancel reply

Avatar placeholder

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.